Poniższy artykuł opracowano w oparciu o stan prawny obowiązujący w momencie powstania tego artykułu.
Redakcja nie gwarantuje aktualności tekstu w okresie późniejszym, jak również nie ponosi odpowiedzialności za ew. stosowanie się do zawartych w nim zaleceń.

Zaokrąglenia w kosztorysie raz jeszcze

Od dłuższego czasu trwa dyskusja na temat dokładności obliczeń wartości kosztorysowych związanej z kwestią zaokrągleń. Bywa że w dyskusji tej padają ze strony użytkowników ostre słowa pod adresem autorów programów. Broniąc programów niekiedy używamy argumentów o ograniczonej precyzji obliczeń wykonywanych przez komputer w związku z dwójkową reprezentacją liczb dziesiętnych. Tymczasem nie jest to ścisłe.
Oczywiście dokładność reprezentacji liczb w komputerze nie jest nieskończona, ale jest zdecydowanie lepsza niż dokładność przeciętnego kalkulatora. Żeby jednak wyjaśnić problem odwołam się do dawnych czasów, gdy kosztorysy robiono "na piechotę". Spróbuję w ten sposób wykazać, że różnice w liczbach wpisywanych do kosztorysu wynikają z przyjętej metody a nie narzędzi.
Zasadniczo mamy dwie metody do wyboru:

 

  1. Metodę dokładnej wartości
    Wartość w rubryce R, M lub S jest tu wyliczana jako iloczyn:

    normatyw * obmiar * cena jednostki miary elementu RMS

    i dopiero po przeliczeniu zaokrąglana do pełnych groszy. Wartość pozycji otrzymywana jest jako suma wartości wszystkich elementów. Cenę jednostkową dla pozycji wyliczamy dzieląc sumę w pozycji przez obmiar.
     

  2. Metodę ceny jednostkowej
    Dla każdego elementu RMS wyznaczamy cenę jednostkową (na jednostkę obmiarową) jako iloczyn:

    normatyw * cena jednostki miary elementu

    zaokrąglając uzyskany wynik do pełnych groszy. Sumując ceny jednostkowe (na jednostkę obmiarową) dla wszystkich elementów uzyskamy wartość ceny jednostkowej dla pozycji. Wartość w pozycji wyliczymy jako iloczyn:

    cena jednostkowa pozycji * obmiar

    W metodzie tej możemy wyliczać wartości poszczególnych elementów pozycji, ale będą one miały znaczenie jedynie orientacyjne.

 

Zasadnicza różnica pomiędzy tymi dwiema metodami sprowadza się do roli ceny jednostkowej pozycji. W metodzie pierwszej ma ona jedynie znaczenie orientacyjne. W metodzie drugiej stanowi natomiast zasadniczą wartość, do której odnosimy wszystkie inne wyliczenia. Najlepiej będzie odwołać się do przykładu. Zaznaczam, że wszystkie poniższe obliczenia wykonałem przy pomocy kartki i długopisu a nie komputera.

 

Rozważmy pozycję kosztorysową złożoną z pięciu elementów:

 

01. robocizna
normatyw 0,731 r-g/m2 cena 5,73 zł/r-g
20. materiał 1
normatyw 1,373 kg/m2 cena 2,73 zł/kg
21. materiał 2
normatyw 0,371 dm3/m2 cena 13,23 zł/dm3
70. sprzęt 1
normatyw 0,233 m-g/m2 cena 133,27 zł/m-g
71. sprzęt 2
normatyw 0,317 m-g/m2 cena 117,31 zł/m-g

 

Obmiar pozycji wynosi 173,3 m2.

 

Jeżeli nie będziemy stosować żadnych zaokrągleń to po dokonaniu obliczeń i wstawieniu wyników do formularza pozycja będzie wyglądała następująco:

 

Opis R M S Cena jedn.
obmiar = 173,3 m2        
robocizna
    0,731 r-g/m2 * 5,73 zł/r-g
725,889579     4,18863
materiał 1
    1,373 kg/m2 * 2,73 zł/kg
materiał 2
    0,371 dm3/m2 * 13,23 zł/dm3
  649,578657

850,613589

  3,74829

4,90833

sprzęt 1
    0,233 m-g/m2 * 133,27 zł/m-g
sprzęt 2
    0,317 m-g/m2 * 117,31 zł/m-g
    5381,296003

6444,553891

31,05191

37,18727

Suma w pozycji: 14051,931719 725,889579 1500,192246 11825,849894 81,08443

Tabela 1. Wyliczenia bez zaokrągleń

 

Można sprawdzić, że w powyższej tabeli wszystko się idealnie zgadza. Możemy sumować w pionie i poziomie, mnożyć dowolną z cen jednostkowych przez obmiar i nie znajdziemy żadnej niezgodności. Jest tylko jeden problem. Nikt nie zgodzi się na to, żebyśmy podawali kwoty z dokładnością do ośmiu miejsc po przecinku czyli do milionowych części grosza. Musimy więc zastosować zaokrąglenia decydując się na jedną z wymienionych wyżej metod.

 

Zastosujmy najpierw metodę dokładnej wartości
W tym celu musimy:
1. Wartości w rubrykach R, M i S zaokrąglić do pełnych groszy
2. Dokonać ponownego sumowania w pionie korzystając z wartości zaokrąglonych
3. Wyliczyć ponownie sumę w pozycji korzystając z nowych wartości sum R, M i S
4. Wyliczyć wartości cen jednostkowych dzieląc odpowiednie wartości przez obmiar

 

Uzyskamy tabelę:

 

Opis R M S Cena jedn.
obmiar = 173,3 m2        
robocizna
    0,731 r-g/m2 * 5,73 zł/r-g
725,89     4,19
materiał 1
    1,373 kg/m2 * 2,73 zł/kg
materiał 2
    0,371 dm3/m2 * 13,23 zł/dm3
  649,58

850,61

  3,75

4,91

sprzęt 1
    0,233 m-g/m2 * 133,27 zł/m-g
sprzęt 2
    0,317 m-g/m2 * 117,31 zł/m-g
    5381,30

6444,55

31,05

37,19

Suma w pozycji: 14051,93 725,89 1500,19 11825,85 81,08

Tabela 2. Wyliczenia metodą dokładnej wartości z zaokrągleniem do pełnych groszy

 

Porównując powyższą tabelę z poprzednią widzimy, że wszystkie wartości w rubrykach R, M i S odpowiadają odpowiednim wartościom z tabeli 1 z dokładnością do zaokrąglenia. Zachowujemy też zgodność sum w pionie i poziomie (wiersz suma w pozycji) za wyjątkiem kolumny "cena jednostkowa". Nie zgadzają się też iloczyny wynikające z mnożenia cen jednostkowych przez obmiar. Jest to zgodne z oczekiwaniami, bo w założeniach do metody stwierdziliśmy, że cena jednostkowa ma w niej jedynie znaczenie orientacyjne. W zasadzie nie ma sensu wyliczania innych cen jednostkowych niż cena jednostkowa dla pozycji. Dlatego też tabela ta powinna wyglądać następująco:

 

Opis R M S Cena jedn.
obmiar = 173,3 m2        
robocizna
    0,731 r-g/m2 * 5,73 zł/r-g
725,89      
materiał 1
    1,373 kg/m2 * 2,73 zł/kg
materiał 2
    0,371 dm3/m2 * 13,23 zł/dm3
  649,58

850,61

   
sprzęt 1
    0,233 m-g/m2 * 133,27 zł/m-g
sprzęt 2
    0,317 m-g/m2 * 117,31 zł/m-g
    5381,30

6444,55

 
Suma w pozycji: 14051,93 725,89 1500,19 11825,85 81,08

Tabela 3. Wyliczenia metodą dokładnej wartości bez zbędnych cen jednostkowych elementów RMS

 

Sprawdźmy teraz działanie metody ceny jednostkowej
W tym celu musimy:

  1. Wyliczyć wartości cen jednostkowych (elementów RMS) mnożąc np.: cenę kilograma lub maszynogodziny przez normatyw i zaokrąglić do pełnych groszy.
  2. Wyliczyć wartości w rubrykach R, M i S jako iloczyny odpowiednich cen jednostkowych i obmiaru.
  3. Dokonać sumowania cen jednostkowych w pionie w celu wyliczenia ceny jednostkowej dla całej pozycji.
  4. Wyliczyć sumę w pozycji mnożąc cenę jednostkową pozycji przez obmiar.
  5. Wyliczyć orientacyjne wartości w rubrykach R, M i S.

 

Uzyskamy tabelę:

 

Opis Cena jedn. R M S
obmiar = 173,3 m2        
robocizna
    0,731 r-g/m2 * 5,73 zł/r-g
4,19 726,13    
materiał 1
    1,373 kg/m2 * 2,73 zł/kg
materiał 2
    0,371 dm3/m2 * 13,23 zł/dm3
3,75

4,91

  649,88

850,90

 
sprzęt 1
    0,233 m-g/m2 * 133,27 zł/m-g
sprzęt 2
    0,317 m-g/m2 * 117,31 zł/m-g
31,05

37,19

    5380,97

6445,03

Suma w pozycji: 14052,90 81,09 726,13 1500,78 11826,00

Tabela 4. Wyliczenia metodą ceny jednostkowej

 

Łatwo zauważyć, że nie zgadza się tu suma w wierszu podsumowania, a wartości w rubrykach R, M i S różnią się od wartości z poprzednich tabel. Jest to zrozumiałe ponieważ, jak wcześniej wspomniałem, w metodzie tej wartości mają znaczenie jedynie orientacyjne i w zasadzie nie powinno się ich wykazywać.

 

Sądzę, że na tym prostym przykładzie doskonale widać z czego wynika problem zaokrągleń a ponieważ wszystkie obliczenia były wykonywane na kartce, widać też, że powstałe niedokładności nie są winą ani programu ani komputera - lecz metody. Metod tych może być zresztą jeszcze więcej. Przedstawiłem tu tylko dwie podstawowe, aby najdobitniej pokazać mechanizm powstawania różnic w obliczeniach.

 

Problem ten jest tak gorąco dyskutowany w ostatnim czasie gdyż niedokładności wyliczania ceny skutkują często odrzuceniem oferty.

 

Aby uchronić się przed taką nieprzyjemnością trzeba zawsze uzyskać od zamawiającego dokładne informacje na temat metody wyliczania ceny kosztorysowej, której on będzie żądał. Gdy taką informację już uzyskamy, to bezwzględnie trzeba przestrzegać zasad obliczania ceny wynikających z wybranej metody i do wydruku nie wprowadzać kolumn innych niż żądane przez zamawiającego. Sprowadza się to do tego, że korzystając z programu kosztorysowego musimy odpowiednio ustawić opcje obliczeń i prezentacji wyników. Problemu nie ma, gdy zamawiający żąda jedynie kosztorysu ofertowego. Wówczas przedstawiamy mu jedynie ceny jednostkowe pozycji i wyliczone z przemnożenia cen jednostkowych przez obmiar wartości pozycji. W takiej sytuacji nie ma większego znaczenia jakiej metody użyliśmy do liczenia cen jednostkowych gdyż zamawiający nie będzie tego sprawdzał. Inaczej jest w przypadku, gdy musimy przedstawić kosztorys szczegółowy, bo wówczas zawsze można wykazać, że albo nie zgadza się suma w pionie lub poziomie, albo nie zgadza się iloczyn ceny jednostkowej przez obmiar z wartością w rubryce R, M lub S albo z wartością pozycji. Nie zgadza się, bo jak wcześniej pokazałem, wszystko naraz zgadzać się nie może. Dlatego przed złożeniem oferty musimy uzgodnić, co zamawiający będzie sprawdzał.

 

- Jeżeli zamawiający będzie sprawdzał sumowanie to musimy w programie NORMA w opcji kosztorysu Liczenie narzutów wybrać szablon: dla całości kosztorysu a opcję Dokładność prezentacji / Dokładność obliczeń kosztów jednostkowych ustawić na: Pełna(maksymalna).

 

- Jeżeli zamawiający będzie sprawdzał iloczyny cen jednostkowych przez obmiar i porównywał je z odpowiednimi wartościami to w Liczeniu narzutów powinniśmy wybrać szablon Zamówienia publiczne (oferta, inwestorski) a opcję Dokładność prezentacji / Dokładność obliczeń kosztów jednostkowych ustawić na: Ogranicz do precyzji wartości jednostk.